Charmed hadrons in nuclear matter and SU(4) flavor symmetry

Gastão Krein
Instituto de Física Teórica, São Paulo
Outline

- Motivation
- J/Ψ in matter
- DN interaction
- SU(4) flavor symmetry in couplings
- Conclusions & perspectives
Interaction of charm with ordinary matter

- Understanding of the nuclear force at QCD level; role of glue
 (origin of hadron masses & confinement)

- D-mesons in medium: chiral-symmetry restoration

- $J/\Psi, \eta_c, D \ldots$: possibly bound to ordinary matter

- Quark-gluon plasma

Experiments underway:
JLab @ 12 GeV, Panda & CBM @ Fair, JPARC, Nica
Charmonium binding in nuclear matter
- an exotic nuclear state

Brodsky, Schmidt & de Téramond, PRL 64, 1011 (1990)

- Nucleons and charmonium have no valence quarks in common

- Interaction has to proceed via gluons – QCD van der Waals

- No Pauli Principle – no short-range repulsion

- Also, binding via D,D* meson loop - interaction with nucleons

BE ~ 10 - 20 MeV

D,D*-meson loops

Calculate loop with effective Lagrangians

– need coupling constants & form factors

– need a model for medium dependence of D masses
Effective Lagrangians

– SU(4) flavor symmetry

\[\mathcal{L}_{\psi DD} = ig_{\psi DD} \psi^\mu \left[\bar{D} (\partial_\mu D) - (\partial_\mu \bar{D}) D \right] \]

\[\mathcal{L}_{\psi DD^*} = \frac{g_{\psi DD^*}}{m_\psi} \varepsilon_{\alpha\beta\mu\nu} (\partial^\alpha \psi^\beta) \left[(\partial_\mu \bar{D}^{*\nu}) D + \bar{D} (\partial_\mu D^{*\nu}) \right] \]

\[\mathcal{L}_{\psi D^* D^*} = ig_{\psi D^* D^*} \left\{ \psi^\mu \left[(\partial_\mu \bar{D}^{*\nu}) D^*_\nu - \bar{D}^{*\nu} (\partial_\mu D^*_\nu) \right] \right. \\
+ \left. \left[(\partial_\mu \psi^{\nu}) \bar{D}^*_\nu - \psi^{\nu} (\partial_\mu \bar{D}^*_\nu) \right] D^{*\mu} \right. \\
+ \left. \bar{D}^{*\mu} \left[\psi^{\nu} (\partial_\mu D^*_\nu) - (\partial_\mu \psi^{\nu}) D^*_\nu \right] \right\} \]
J/Ψ single-particle energies in nuclei
– solve a Klein-Gordon equation, D, D* masses QMC model

<table>
<thead>
<tr>
<th></th>
<th>$\Lambda_{D,D^*} = 1500$ MeV</th>
<th>$\Lambda_{D,D^*} = 2000$ MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^4_\psi$He</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$1s$</td>
<td>$1s$</td>
</tr>
<tr>
<td></td>
<td>-4.19</td>
<td>-5.74</td>
</tr>
<tr>
<td>$^{12}_\psi$C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$1s$</td>
<td>$1s$</td>
</tr>
<tr>
<td></td>
<td>-9.33</td>
<td>-11.21</td>
</tr>
<tr>
<td></td>
<td>$1p$</td>
<td>$1p$</td>
</tr>
<tr>
<td></td>
<td>-2.58</td>
<td>-3.94</td>
</tr>
<tr>
<td>$^{16}_\psi$O</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$1s$</td>
<td>$1s$</td>
</tr>
<tr>
<td></td>
<td>-11.23</td>
<td>-13.26</td>
</tr>
<tr>
<td></td>
<td>$1p$</td>
<td>$1p$</td>
</tr>
<tr>
<td></td>
<td>-5.11</td>
<td>-6.81</td>
</tr>
<tr>
<td>$^{40}_\psi$Ca</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$1s$</td>
<td>$1s$</td>
</tr>
<tr>
<td></td>
<td>-14.96</td>
<td>-17.24</td>
</tr>
<tr>
<td></td>
<td>$1p$</td>
<td>$1p$</td>
</tr>
<tr>
<td></td>
<td>-10.81</td>
<td>-12.92</td>
</tr>
<tr>
<td></td>
<td>$1d$</td>
<td>$1d$</td>
</tr>
<tr>
<td></td>
<td>-6.29</td>
<td>-8.21</td>
</tr>
<tr>
<td></td>
<td>$2s$</td>
<td>$2s$</td>
</tr>
<tr>
<td></td>
<td>-5.63</td>
<td>-7.48</td>
</tr>
<tr>
<td>$^{90}_\psi$Zr</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$1s$</td>
<td>$1s$</td>
</tr>
<tr>
<td></td>
<td>-16.38</td>
<td>-18.69</td>
</tr>
<tr>
<td></td>
<td>$1p$</td>
<td>$1p$</td>
</tr>
<tr>
<td></td>
<td>-13.84</td>
<td>-16.07</td>
</tr>
<tr>
<td></td>
<td>$1d$</td>
<td>$1d$</td>
</tr>
<tr>
<td></td>
<td>-10.92</td>
<td>-13.06</td>
</tr>
<tr>
<td></td>
<td>$2s$</td>
<td>$2s$</td>
</tr>
<tr>
<td></td>
<td>-10.11</td>
<td>-12.22</td>
</tr>
<tr>
<td>$^{208}_\psi$Pb</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$1s$</td>
<td>$1s$</td>
</tr>
<tr>
<td></td>
<td>-16.83</td>
<td>-19.10</td>
</tr>
<tr>
<td></td>
<td>$1p$</td>
<td>$1p$</td>
</tr>
<tr>
<td></td>
<td>-15.36</td>
<td>-17.59</td>
</tr>
<tr>
<td></td>
<td>$1d$</td>
<td>$1d$</td>
</tr>
<tr>
<td></td>
<td>-13.61</td>
<td>-15.81</td>
</tr>
<tr>
<td></td>
<td>$2s$</td>
<td>$2s$</td>
</tr>
<tr>
<td></td>
<td>-13.07</td>
<td>-15.26</td>
</tr>
</tbody>
</table>

Are those binding energies large enough to bind a J/Ψ to a large nucleus?

Condition for a bound state:

- spherical “square-well” radius R, depth V_0

\[
V_0 > \frac{\pi^2 \hbar^2}{8mR^2}
\]

$R = 5 \text{ fm} \rightarrow V_0 > 1 \text{ MeV}$
ATHENNA* collaboration JLab @ 12 GeV

Z.-E. Meziani (Co-spokesperson/Contact)
N. Sparveris (Co-spokesperson)
Z.W. Zhao (Co-spokesperson)

*A J/Ψ THreshold Electroproduction on the Nucleon and Nuclei Analysis
Issues:

1) Interaction of D mesons with nucleons
2) SU(4) flavor symmetry
3) Width of D mesons
4) J/Ψ moving, not at rest
5) . . .

Next: 1) and 2)
Experiment
- antiproton annihilation on the deuteron*

* J. Haidenbauer, G. Krein, U.-G. Meissner, A. Sibirtsev

DN interaction
– meson + quark exchange

\[
\begin{array}{c}
\text{MEX: } \text{SU(4)-flavor symmetry for couplings, same cutoffs as KN} \\
\text{QEX: change quark masses (wave functions)}
\end{array}
\]
Meson-meson-meson vertices

\[\mathcal{L}_{PPV} = g_{PPV} \Phi_P(x) \partial_\mu \Phi_P(x) \Phi^\mu_V(x) \]

\[\mathcal{L}_{VV_P} = \frac{g_{VV_P}}{m_V} i \epsilon_{\mu \nu \tau \delta} \partial^\mu \Phi^\nu_V(x) \partial^\tau \Phi^\delta_V(x) \Phi_P(x) \]
Baryon-baryon-meson vertices

\[\mathcal{L}_{NNP} = g_{NNP} \bar{\Psi}_N(x)i\gamma^5 \Psi_N(x)\Phi_P(x) \]

\[\mathcal{L}_{NNV} = g_{NNV} \bar{\Psi}_N(x)\gamma_\mu \Psi_N(x)\Phi^\mu_V(x) + \frac{f_{NNV}}{4m_N} \bar{\Psi}_N(x)\sigma_{\mu\nu} \Psi_N(x)(\partial_\mu \Phi^\nu_V(x) - \partial^\nu \Phi^\mu_V(x)) \]

\[\mathcal{L}_{N\Delta P} = \frac{f_{N\Delta P}}{m_P} \bar{\Psi}_{\Delta \mu}(x)\Psi_N(x)\partial_\mu \Phi_P(x) + \text{H.c.} \]

\[\mathcal{L}_{N\Delta V} = \frac{f_{N\Delta V}}{m_V} i(\bar{\Psi}_{\Delta \mu}(x)\gamma^5 \gamma_\mu \Psi_N(x) - \bar{\Psi}_N(x)\gamma^5 \gamma_\mu \Psi_{\Delta \mu}(x))(\partial_\mu \Phi^\nu_V(x) - \partial^\nu \Phi^\mu_V(x)) \]

\[\mathcal{L}_{NYP} = \frac{f_{NYP}}{m_P} (\bar{\Psi}_Y(x)\gamma^5 \gamma_\mu \Psi_N(x) + \bar{\Psi}_N(x)\gamma^5 \gamma_\mu \Psi_Y(x))\partial_\mu \phi_P(x) \]
Based on a previous KN Juelich model

- M. Hoffmann et al. NPA 593, 341 (1995)

Contains a short-ranged “repulsive scalar” $m \sim 1.2$ GeV

Can be replaced by quark-gluon exchange
Hadjimichef, Haidenbauer and GK, PRC 66, 055214 (2002)
Model fits available KN data
describes even phase shifts
... and helped to kill the pentaquark (1540)

PHYSICAL REVIEW C 68, 052201(R) (2003)

Influence of a $Z^+(1540)$ resonance on K^+N scattering

J. Haidenbauer1 and G. Krein2

1Forschungszentrum Jülich, Institut für Kernphysik, D-52425 Jülich, Germany
2Instituto de Física Teórica, Universidade Estadual Paulista, Rua Pamplona, 145-01405-900 São Paulo, SP, Brazil

(Received 22 September 2003; published 18 November 2003)

The impact of a ($J=0, I^P = \frac{1}{2}^+$) $Z^+(1540)$ resonance with a width of 5 MeV or more on the $K^+N(J=0)$ elastic cross section and on the P_{01} phase shift is examined within the KN meson-exchange model of the Jülich group. It is shown that the rather strong enhancement of the cross section caused by the presence of a Z' with the above properties is not compatible with the existing empirical information on KN scattering. Only a much narrower Z' state could be reconciled with the existing data—or, alternatively, the Z' state must lie at an energy much closer to the KN threshold.

Predictions for the PANDA measurement

Use SU(4) symmetry for couplings:

* J. Haidenbauer, G. Krein, U.-G. Meissner, A. Sibirtsev
DN interaction
– in a color confining chiral quark model*

Inspired in the QCD Hamiltonian in Coulomb gauge

Derive from the same underlying Hamiltonian:
– constituent quark masses (mass generation)
– hadron wave-functions, hadron masses (confinement)
– effective meson-baryon interaction (nuclear force)
– X-sections, etc (observables)
– density & temperature dependence on hadron masses (not here)

Hamiltonian

\[H = H_0 + H_{\text{int}} \]

\[H_0 = \int dx \, \Psi^\dagger(x)(-i\alpha \cdot \nabla + \beta m)\Psi(x) \]

\[H_{\text{int}} = -\frac{1}{2} \int dx \, dy \, \rho^a(x) \, V_C(|x - y|) \, \rho^a(y) \]
\[+ \frac{1}{2} \int dx \, dy \, \rho^a_i(x) \, D^{ij}(|x - y|) \, \rho^a_j(y) \]

\[\rho^a(x) = \Psi^\dagger(x) \, T^a \, \Psi(x) \]
\[J^a_i(x) = \Psi^\dagger(x) \, T^a \, \alpha_i \, \Psi(x) \]
Input from the lattice

- Coulomb kernel – potential

\[V_{Coul}(\mathbf{k}) = \frac{1}{8L_s^3} \left(\sum_{a,\tilde{x},\tilde{y}} e^{i\mathbf{k} \cdot (\tilde{x} - \tilde{y})} [M^{-1}(-\Delta)M^{-1}]^{aa}_{\tilde{x}\tilde{y}} \right) \]

\[V_{Coul}(q) = \frac{6}{\beta} a^2 V_{Coul}^L(k, \beta), \quad q_i(k_i) = \frac{2}{a} \sin \left(\frac{\pi k_i}{L_i} \right) \]

- Fit from simulations*

\[V_{Coul}(q) = \frac{8\pi \sigma_{Coul}}{q^4} + \frac{4\pi C}{q^2} \]

\(\begin{cases}
\sigma_{Coul} = (552 \text{ MeV})^2 \\
C = 6
\end{cases} \)

Transverse-gluon propagator

\[D_{ij}^{ab}(\vec{k}) = \langle \tilde{A}_i^a(\vec{k})\tilde{A}_j^b(-\vec{k}) \rangle = \delta^{ab}\left(\delta_{ij} - \frac{p_i(\vec{k})p_j(\vec{k})}{p^2} \right) D_{tr}(p) \]

\[p_i(\vec{k}) = \frac{2}{a} \sin\left(\frac{\pi k_i}{L} \right) \]

finite in the infrared
From the same Hamiltonian:

- dynamically generated quark masses
- hadron wavefunctions (color singlets only)
- hadron-hadron interactions
- X-sections, phase-shifts, ...
Quark mass function

- dynamical chiral symmetry breaking

(Dyson-Schwinger equation)
Cross-sections

- short-distance: quark interchange
- long-distance: meson-exchange (mainly rho, omega sigma)
Phase shifts

\(\delta \) [degrees]

\(E_{\text{c.m.}} - m_N - m_K \) [MeV]

\(E_{\text{c.m.}} - m_N - m_D \) [MeV]

PSA GWDAC

Model 1

Model 2

I = 1

(b)
How good is SU(4) flavor symmetry for couplings?

\[m_u < m_s \ll m_c \]

SU(4) symmetry:

\[g_{\bar{D}\rho\bar{D}} = g_{K\rho K} = \frac{1}{2} g_{\pi\rho\pi} \]

\[g_{N\Lambda_c\bar{D}} = g_{N\Lambda\bar{K}} = g_{NN\pi} \]
Coupling constants & Form factors

Dyson-Schwinger & Bethe-Salpeter equations:
- rainbow ladder, no free parameters (heavily constrained spectrum and e.w. decay constants)

\[\frac{g_{K\rho K}}{g_{D\rho D}} \sim \frac{1}{4} \rightarrow 400\% \text{ violation} \]

\[\frac{g_{K\rho K}}{g_{\pi\rho\pi}} \sim \frac{1}{2} \rightarrow \text{SU}(4) \text{ OK} \]

COUPLING LARGE, BUT FORM FACTORS ARE SOFT
- DN X-SECTION ONLY 5 TIMES LARGER THAN SU(4)

On the other hand:
- nonrelativistic quark model + 3P_0 decay

<table>
<thead>
<tr>
<th></th>
<th>$g_{\rho\pi\pi}/2g_{\rho KK}$</th>
<th>$g_{\rho\pi\pi}/2g_{\rho DD}$</th>
<th>$g_{\rho KK}/g_{\rho DD}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU(4) symmetric</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SU(4) broken</td>
<td>1.05</td>
<td>1.28</td>
<td>1.22</td>
</tr>
</tbody>
</table>

SU(4) BREAKING: AT THE LEVEL OF 20% – 30%

C. E. Fontoura, GK, J. Haidenbauer (2013)
Nonrelativistic quark model + 3P_0 decay

<table>
<thead>
<tr>
<th></th>
<th>$\frac{g_{NN\pi}}{g_{N\Lambda_s K}}$</th>
<th>$\frac{g_{NN\pi}}{g_{N\Lambda_c \bar{D}}}$</th>
<th>$\frac{g_{N\Lambda_s K}}{g_{N\Lambda_c \bar{D}}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU(4) symmetric</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SU(4) broken</td>
<td>1.07</td>
<td>1.20</td>
<td>1.12</td>
</tr>
</tbody>
</table>

SU(4) BREAKING: AT THE LEVEL OF 10% – 15%
QCD sum rules\(^1\) & Lattice\(^2\)

– looked at SU(4) symmetry breaking within the charm sector only

\[g_\rho DD = g_\rho D^* D^* = g_\pi D^* D \]

QCD sum rules

<table>
<thead>
<tr>
<th>SU(4) relation</th>
<th>Violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g_{\psi DD} = g_{\bar{\psi} D^* D^*}$</td>
<td>(7%)</td>
</tr>
<tr>
<td>$g_{\rho DD^} = \frac{\sqrt{6}}{2} g_{\bar{\psi} D^ D^*}$</td>
<td>(12%)</td>
</tr>
<tr>
<td>$g_{\rho DD} = \frac{\sqrt{6}}{4} g_{\bar{\psi} DD}$</td>
<td>(17%)</td>
</tr>
<tr>
<td>$g_{\pi D^* D^} = \frac{\sqrt{6}}{2} g_{\bar{\psi} DD^}$</td>
<td>(20%)</td>
</tr>
<tr>
<td>$g_{D^* D^* \rho} = \frac{\sqrt{6}}{4} g_{\bar{\psi} D^* D^*}$</td>
<td>(20%)</td>
</tr>
<tr>
<td>$g_{DD^* \rho} = \frac{\sqrt{6}}{4} g_{\bar{\psi} D^* D^*}$</td>
<td>(21%)</td>
</tr>
<tr>
<td>$g_{\rho D^* D^*} = \frac{\sqrt{6}}{4} g_{\bar{\psi} DD}$</td>
<td>(25%)</td>
</tr>
<tr>
<td>$g_{\pi D^* D^} = g_{\rho DD^}$</td>
<td>(29%)</td>
</tr>
<tr>
<td>$g_{\rho DD} = g_{\rho D^* D^*}$</td>
<td>(36%)</td>
</tr>
<tr>
<td>$g_{D^* D^* \rho} = g_{D^* D^* \rho}$</td>
<td>(52%)</td>
</tr>
<tr>
<td>$g_{D^* D^} = \frac{\sqrt{6}}{4} g_{\bar{\psi} D^ D^*}$</td>
<td>(62%)</td>
</tr>
<tr>
<td>$g_{D^* D^*} = \frac{\sqrt{6}}{4} g_{\bar{\psi} DD}$</td>
<td>(64%)</td>
</tr>
<tr>
<td>$g_{D^* D^} = g_{DD^ \rho}$</td>
<td>(70%)</td>
</tr>
</tbody>
</table>

Lattice

\[g_{D^* D \pi} = 16.23(1.71) \]

\[g_{DD \rho} = 4.84(34) \]

\[g_{D^* D^* \rho} = 5.94(56) \]

Perspectives
- supernuclei (or charm hypernuclei)

A: primary vertex
B: vertex decay of a supernucleus decay
C: decay of \bar{D}^0 (signal of $c\bar{c}$ pair)

Yu. A. Batusov et al., JETP Lett. 33, 56 (1981)
Theory, QMC model:

TABLE I. Single-particle energies (in MeV) for 17O, 41Ca, and 49Ca ($j = \Lambda_c^+, \Lambda_b$). Single-particle energy levels are calculated up to the same highest states as that of the core neutrons. Results for the hypernuclei are taken from Ref. [10]. Experimental data for Λ hypernuclei are taken from Ref. [28], where spin-orbit splittings for Λ hypernuclei are not well determined by the experiments.

<table>
<thead>
<tr>
<th></th>
<th>16O (Expt.)</th>
<th>17O Λ_c^+</th>
<th>17O Λ_b</th>
<th>40Ca (Expt.)</th>
<th>41Ca Λ_c^+</th>
<th>41Ca Λ_b</th>
<th>49Ca Λ_c^+</th>
<th>49Ca Λ_b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1s1/2</td>
<td>12.5</td>
<td>14.1</td>
<td>12.8</td>
<td>19.6</td>
<td>20.0</td>
<td>19.5</td>
<td>12.8</td>
<td>23.0</td>
</tr>
<tr>
<td>1p3/2</td>
<td>2.5</td>
<td>5.1</td>
<td>7.3</td>
<td>16.5</td>
<td>12.0</td>
<td>12.3</td>
<td>9.2</td>
<td>20.9</td>
</tr>
<tr>
<td>1p1/2</td>
<td>(1p3/2)</td>
<td>5.0</td>
<td>7.3</td>
<td>16.5</td>
<td>12.3</td>
<td>12.3</td>
<td>9.1</td>
<td>20.9</td>
</tr>
<tr>
<td>1d5/2</td>
<td>-4.7</td>
<td>-4.8</td>
<td>-18.4</td>
<td>-6.5</td>
<td>-6.5</td>
<td>-19.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2s1/2</td>
<td>-3.5</td>
<td>-3.4</td>
<td>-17.4</td>
<td>-5.4</td>
<td>-5.3</td>
<td>-18.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1d3/2</td>
<td>-4.6</td>
<td>-4.8</td>
<td>-18.4</td>
<td>-6.4</td>
<td>-6.4</td>
<td>-19.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1f7/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Nonmesonic decays of charm hypernuclei*

\[\Lambda_c + N \rightarrow N + N \]
\[\Lambda_c + N \rightarrow N + \Lambda \]

\(L: \) weak vertex

\(R: \) strong vertex

\(V = H_W \otimes H_S\)

*A.P. Galeão, GK, F. Krmpotic