The multiple-scattering series (MSS) in few-nucleon systems

Vadim Baru

Institut für Theoretische Physik II, Ruhr-Universität Bochum Germany
Institute for Theoretical and Experimental Physics, Moscow, Russia

Menu 2013, Rome

in collaboration with
E. Epelbaum, C. Hanhart, M. Hoferichter, A. E. Kudryavtsev, and D.R. Phillips

related article: EPJA 48, 69 (2012)
MSS: definition

A particular class of diagrams where a meson (e.g. pion) scatters many times between a pair of nucleons.

Mesonic atoms – prime source of information about MN scattering lengths

High-precision physics ⇒ control over theor. uncertainty ⇒ EFT (ChPT)
Example: pionic atoms

\[\pi H, \pi D, \pi^3 \text{He} \] – tool to extract \(\pi N \) scattering lengths

\[f_{\pi N} = a^+ \delta^{ab} + a^- i\epsilon^{bac} \tau^c \] – isospin symmetric \(\pi N \) amplitude at threshold

\(a^+, a^- \)

\[g_{\pi NN} \]

\(\pi N \sigma \)-term

NN sector, nuclear physics, pion photoproduction

strange content of the nucleon

LO in ChPT (Weinberg (1966)):

\[a^+ = 0 \]

\[a^- = \frac{M_\pi}{(1 + M_\pi/m_N)8\pi F_\pi^2} \]
Example: pionic atoms

$\pi H, \pi D, \pi^3 He$ – tool to extract πN scattering lengths

$$f_{\pi N} = a^+ \delta^{ab} + a^- i\epsilon^{bac} \tau^c$$ – isospin symmetric πN amplitude at threshold

$g_{\pi NN}$, $\pi N \sigma$–term

NN sector, nuclear physics, pion photoproduction

strange content of the nucleon

LO in ChPT (Weinberg (1966)): $a^+ = 0$

$$a^- = \frac{M_\pi}{(1 + M_\pi/m_N)8\pi F_\pi^2}$$

\Rightarrow Reliable extraction of a^+ and a^- is possible from a combined analysis of πH and πD data: $a^+ = (7.6 \pm 3.1) \cdot 10^{-3} M_\pi^{-1}$, $a^- = (86.1 \pm 0.9) \cdot 10^{-3} M_\pi^{-1}$

\Rightarrow MSS – key contribution to πD scattering (Brückner 1953)
Hadronic atoms

- Driving force - static Coulomb potential
- Correction due to strong interaction: \(\epsilon_{1s} = E_{1s}^{\text{exp}} - E_{1s}^{\text{Coul}} \neq 0 \)

\[
\epsilon_{1s} \sim < \Psi_p^{\text{Coul}} | V_{\pi N}^{\text{str}} | \Psi_q^{\text{Coul}} > \sim a_{\pi-p} \Psi_{\text{Coul}}(r = 0)^2
\]

(Deser et al. (1954))

- finite lifetime \(\Rightarrow \) \(\Gamma_{1s} \sim a_{\pi-p \rightarrow \pi^0 n}^2 \)

- High-precision data exist \((\text{PSI, Gotta et al. 2008, Strauch et al. 2010}) \):
 - \(\pi H : \) \(\epsilon_{1s} = (-7.120 \pm 0.012) \text{ eV}, \) \(\Gamma_{1s} = (0.823 \pm 0.019) \text{ eV} \)
 - \(\pi D : \) \(\epsilon_{1s}^d = (2.356 \pm 0.031) \text{ eV} \) \(\Rightarrow \) \(\text{Re} a_{\pi d} \)

- High-accuracy ChPT calculation: 5% uncertainty \((\text{VB et al. 2011}) \):

\[
\text{Re} a_{\pi d} = 2 \frac{1 + M_{\pi}/m_N}{1 + M_{\pi}/2m_N} a^+ + a_{(3\text{body})}(a^-) + a_{IV}
\]

- one-body term
- few-body effects
- isospin violation
Hierarchy of 3-body operators in ChPT: \(O(p) \sim m_\pi / m_N\)

LO=O(1)

The diagrams of the LO-type but with subleading vertices cancel altogether

S. Weinberg (1992), S. Beane et al. (1998)

NLO=O(p)

Effect of nucleon recoil in the LO diagrams

S. Beane et al. (2002)

S. Liebig et al. (2010)

V. Baru et al. (2004, 2009)

N^{3/2}LO=O(p^{3/2})

Effect of nucleon recoil in the LO diagrams

V. Lensky et al. (2007)

V. Baru et al. (2008)

V. Baru et al. (2004, 2009)

N^2LO=O(p^2)

Theor. uncertainty estimate: \((M_\pi / m_N)^2 \cdot a^{(LO)}_{\pi d} \sim 5\% a^{(exp)}_{\pi d}\)
Hierarchy of 3-body operators in ChPT: $O(p) \sim m_\pi / m_N$

LO = O(1)

S. Weinberg (1992), S. Beane et al. (1998)

NLO = O(p)

The diagrams of the LO-type but with subleading vertices cancel altogether

S. Beane et al. (2002)
S. Liebig et al. (2010)

Effect of nucleon recoil in the LO diagrams

V. Baru et al. (2004, 2009)

$N^{3/2}$LO = O($p^{3/2}$)

V. Lensky et al. (2007)
V. Baru et al. (2008)

Effect of nucleon recoil in the LO diagrams

V. Baru et al. (2004, 2009)

N^2LO = O(p^2)

Theor. uncertainty estimate: $(M_\pi / m_N)^2 \cdot a_{\pi d}^{(LO)} \sim 5\% \cdot a_{\pi d}^{(exp)}$
MSS in perturbation theory

- Double scattering term \((Q = p - p')\)

\[
A^{(2)}(Q) = \frac{a^2}{Q^2},
\]

- leading few-body term in \(\pi D\)

- Triple scattering (leading effect from nucleon pole):

\[
A^{(3)}(Q) = -4\pi a^3 \int \frac{d^3l}{(2\pi)^3} \frac{1}{l^2(1 - Q)^2} = -\frac{a^3}{2\pi|Q|} J_0
\]

\[
J_0 = \int_0^\infty \frac{dx}{x} \log \left(\frac{x + 1}{x - 1}\right)^2
\]

- Power counting:

\[
\frac{A^{(3)}}{A^{(2)}} = \frac{aQ}{2\pi} \sim \left(\frac{M_{\pi}}{4\pi F_\pi}\right)^2 J_0 \quad \Rightarrow \quad \text{NDA:} \quad J_0 \sim 1
\]

Calculation: \(J_0 \sim \pi^2\)

formally \(N^2\text{LO} \approx 5\%) \text{ but numerically } \approx 12\%

- enhancement is due to presence of Coulombic-type propagators (no mass scale)!

S.Liebig, VB, F. Ballout, C. Hanhart, A. Nogga (2011)

- Are the higher-order MSS terms also enhanced?
MSS in perturbation theory cont’d

- Quadrupole scattering:

\[A^{(4)}(Q) = (4\pi)^2 a^4 \int \frac{d^3 l_1}{(2\pi)^3} \frac{d^3 l_2}{(2\pi)^3} \frac{1}{l_1^2(l_1 - l_2)^2(l_2 - Q)^2} \]

 - **dimensionless**: only one scale \(Q \) ⇒ integral must be a constant

 - **UV divergent** ⇒ regularization ⇒ renormalization ⇒ contact term \(f_0(\mu) \)

\[A^{(4)}(Q) = -a^4 \log \frac{Q}{\mu} + \frac{f_0(\mu)}{32\pi^2} \]

- \(A^{(4)} \) vs. \(A^{(2)} \)

\[\frac{A^{(4)}}{A^{(2)}} = a^2 Q^2 \sim 4\pi^2 \left(\frac{M_\pi}{4\pi F_\pi} \right)^4 \]

 - \(\pi^2 \) enhanced again

- ⇒ Problem: \(f_0(\mu) \) also \(\pi^2 \) enhanced

- No problem for \(\pi D \) scattering: \(\pi^2 N^4\text{LO} \ll N^2\text{LO} \) but relevant for KD scattering
MSS resummation

- Integral (Faddeev-type) Eq. for MSS with static nucleons

\[T(p', p) = t_{\pi N}(0, 0)(2\pi)^3 \delta(3)(p' - p) + \int \frac{d^3p''}{(2\pi)^3} t_{\pi N}(p - p'', 0) \frac{1}{(p - p'')^2} T(p', p'') \]

- Translational invariant: \(T(p', p) = (4\pi)^2 A(Q) \)

\[A(Q) = t_{\pi N}(0)(2\pi)^3 \frac{\pi}{2} \delta(3)(Q) + \int \frac{d^3p''}{(2\pi)^3} t_{\pi N}(p - p'') \frac{1}{(p - p'')^2} A(p' - p'') \]

- \(\pi N \) interaction has some range \(\Lambda_{\pi N} \):

\[t_{\pi N}(p) = -4\pi a \hat{g}\left(\frac{|p|}{\Lambda_{\pi N}}\right), \quad \hat{g}(x) \to 1 \quad \text{when} \quad x \to 0 \]

- EFT is valid when \(Q < \Lambda \) (\(\sim 4\pi F_\pi \) in ChPT); \(\Lambda_{\pi N} \approx \Lambda \)

- Fourier transform of the integral Eq. \(\Rightarrow \) analytic result in \(r \)-space:

\[A(r) = -\frac{a}{4\pi} - \frac{a}{r} g(r) A(r) \quad \Rightarrow \quad A(r) = -\frac{ar}{4\pi(r + ag(r))} \]
MSS resummation

- Resummed MSS with static nucleons:
 \[A(r) = -\frac{ar}{4\pi(r + ag(r))} \]

- Perturbation series:
 - valid if the scattering length \(a \) is natural: \(a \lesssim \Lambda^{-1} \approx (4\pi F_\pi)^{-1} \Rightarrow \frac{a}{r} \sim \frac{Q}{\Lambda} \ll 1 \)
 - Expansion in \(a/r \) and Fourier transform reproduces the individual MSS terms

For example:
\[A^{(4)}(Q) = -a^4 \log \frac{Q}{\Lambda} \] diverges when \(\Lambda \to \infty \)
MSS resummation

- Resummed MSS with static nucleons:
 \[A(r) = -\frac{ar}{4\pi(r + ag(r))} \]

- Perturbation series:
 - valid if the scattering length \(a \) is natural:
 \[a \lesssim \Lambda^{-1} \approx (4\pi F_\pi)^{-1} \Rightarrow \frac{a}{r} \sim \frac{Q}{\Lambda} \ll 1 \]
 - Expansion in \(a/r \) and Fourier transform reproduces the individual MSS terms
 For example:
 \[A^{(4)}(Q) = -a^4 \log \frac{Q}{\Lambda} \]
 diverges when \(\Lambda \to \infty \)

- The resummed MSS is much less \(\Lambda \) dependent (finite when \(\Lambda \to \infty \)):
 \[A(r) = -\frac{ar}{4\pi(r + a)} \]

- Does the limit \(\Lambda \to \infty \) affects the physics?
 \[\Delta A \equiv A_\Lambda(r) - A_{\Lambda \to \infty}(r), \quad \frac{<\Delta A>}{a\pi d} \leq 3\% \Rightarrow \text{less than CT at } N^2\text{LO} \]
MSS resummation

- Resummed MSS with static nucleons:
 \[A(r) = -\frac{ar}{4\pi(r + ag(r))} \]

- Perturbation series:
 - valid if the scattering length \(a \) is natural:
 \[a \lesssim \Lambda^{-1} \approx (4\pi F_\pi)^{-1} \Rightarrow \frac{a}{r} \sim \frac{Q}{\Lambda} \ll 1 \]
 - Expansion in \(a/r \) and Fourier transform reproduces the individual MSS terms
 For example:
 \[A^{(4)}(Q) = -a^4 \log \frac{Q}{\Lambda} \quad \text{diverges when} \quad \Lambda \to \infty \]

- The resummed MSS is much less \(\Lambda \) dependent (finite when \(\Lambda \to \infty \)):
 \[A(r) = -\frac{ar}{4\pi(r + a)} \]

- Does the limit \(\Lambda \to \infty \) affects the physics?
 \[\Delta A \equiv A_\Lambda(r) - A_{\Lambda \to \infty}(r), \quad \frac{\langle \Delta A \rangle}{a \pi d} \leq 3\% \quad \Rightarrow \text{less than CT at } N^2\text{LO} \]

Conclusion: No enhanced CT is needed in the resummed MSS
Pole in the resummed MSS

\[A(r) = -\frac{ar}{4\pi(r + ag(r))} \]

exhibits a pole if \(a < 0 \)

- natural \(a \) \(\Rightarrow \) pole is near the origin: \(r < \Lambda^{-1} \Rightarrow Q > \Lambda \Rightarrow \) beyond applicability of EFT

- unnaturally large \(a \): \(a\Lambda > 1 \) \(\Rightarrow \) pole in physical region \(r \sim Q^{-1} \sim a > \Lambda^{-1} \)

- But if \(a > \Lambda^{-1} \) \(\Rightarrow \) shallow meson\(N \) state: \(t = -\frac{4\pi}{1/a - iQ} \) \(\Rightarrow \) Efimov physics

- Unitarity and recoil corrections shift the pole from phys. region towards origin

- But for \(a \gg \Lambda^{-1} \) the pole still affects the results \(\Rightarrow \) may be resum range corrections?!
Conclusions

• MSS plays a crucial role for extracting meson-nucleon scattering lengths from mesonic atoms

• Topological enhancement of the individual MSS diagrams ⇒ potential problem with the theor. uncertainty estimate

• No enhanced contact operators is necessary upon resummation
Conclusions

• MSS plays a crucial role for extracting meson-nucleon scattering lengths from mesonic atoms

• Topological enhancement of the individual MSS diagrams ⇒ potential problem with the theor. uncertainty estimate

• No enhanced contact operators is necessary upon resummation

• Unphysical pole in the resummed MSS with isoscalar interactions
 ➔ outside the range of applicability of EFT for natural sc. lengths
 ➔ sc. length approximation is not justified for unnatural sc. lengths
 ➔ inclusion of unitarity, recoil and m.b. range corrections is necessary
 ➔ no pole appears for isovector dominated or absorptive interactions
Conclusions

- MSS plays a crucial role for extracting meson-nucleon scattering lengths from mesonic atoms
- Topological enhancement of the individual MSS diagrams ⇒ potential problem with the theor. uncertainty estimate
- No enhanced contact operators is necessary upon resummation
- Unphysical pole in the resummed MSS with isoscalar interactions
 - ⇒ outside the range of applicability of EFT for natural sc. lengths
 - ⇒ sc. length approximation is not justified for unnatural sc. lengths
 - ⇒ inclusion of unitarity, recoil and m.b. range corrections is necessary
 - ⇒ no pole appears for isovector dominated or absorptive interactions

- Both perturbative and resummed MSS schemes are applicable for \(\pi D \) scatt.
- Resummed MSS is justified for \(KD \) scattering length